1,513 research outputs found

    The Doped Two Chain Hubbard Model

    Full text link
    The properties of the two-chain Hubbard Model doped away from half-filling are investigated. The charge gap is found to vanish, but a finite spin gap exists over a range of interchain hopping strength t⊥t_\perp. In this range, there are modified dx2−y2d_{x^2-y^2}--like pairing correlations whose strength is correlated with the size of the spin gap. It is found that the pair field correlations are enhanced by the onsite Coulomb interaction U.Comment: 10 pages and 5 postscript figures, RevTeX 3.0, UCI-CMTHE-94-0

    On the dimerized phase in the cross-coupled antiferromagnetic spin ladder

    Get PDF
    We revisit the phase diagram of the frustrated s=1/2 spin ladder with antiferromagnetic rung and diagonal couplings. In particular, we reexamine the evidence for the columnar dimer phase, which has been predicted from analytic treatment of the model and has been claimed to be found in numerical calculations. By considering longer chains and by keeping more states than in previous work using the density-matrix renormalization group, we show that the numerical evidence presented previously for the existence of the dimerized phase is not unambiguous in view of the present more careful analysis. While we cannot completely rule out the possibility of a dimerized phase in the cross-coupled ladder, we do set limits on the maximum possible value of the dimer order parameter that are much smaller than those found previously.Comment: 6 pages, 7 figure

    Quantum information analysis of the phase diagram of the half-filled extended Hubbard model

    Full text link
    We examine the phase diagram of the half-filled one-dimensional extended Hubbard model using quantum information entropies within the density-matrix renormalization group. It is well known that there is a charge-density-wave phase at large nearest-neighbor and small on-site Coloumb repulsion and a spin-density-wave at small nearest-neighbor and large on-site Coloumb repulsion. At intermediate Coulomb interaction strength, we find an additional narrow region of a bond-order phase between these two phases. The phase transition line for the transition out of the charge-density-wave phase changes from first-order at strong coupling to second-order in a parameter regime where all three phases are present. We present evidence that the additional phase-transition line between the spin-density-wave and bond-order phases is infinite order. While these results are in agreement with recent numerical work, our study provides an independent, unbiased means of determining the phase boundaries by using quantum information analysis, yields values for the location of some of the phase boundaries that differ from those previously found, and provides insight into the limitations of numerical methods in determining phase boundaries, especially those of infinite-order transitions.Comment: 8 pages, 7 figure

    Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

    Full text link
    In these lecture notes, we present a pedagogical review of a number of related {\it numerically exact} approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on methods extending exact diagonalization using renormalization group ideas, i.e., Wilson's Numerical Renormalization Group (NRG) and White's Density Matrix Renormalization Group (DMRG). These methods are standard tools for the investigation of a variety of interacting quantum systems, especially low-dimensional quantum lattice models. We also survey extensions to the methods to calculate properties such as dynamical quantities and behavior at finite temperature, and discuss generalizations of the DMRG method to a wider variety of systems, such as classical models and quantum chemical problems. Finally, we briefly review some recent developments for obtaining a more general formulation of the DMRG in the context of matrix product states as well as recent progress in calculating the time evolution of quantum systems using the DMRG and the relationship of the foundations of the method with quantum information theory.Comment: 51 pages; lecture notes on numerically exact methods. Pedagogical review appearing in the proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors", Vietri sul Mare (Salerno, Italy, October 2004

    Random dispersion approximation for the Hubbard model

    Full text link
    We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum distribution, and the quasi-particle weight. We find a satisfactory agreement with perturbative results in the weak- and strong-coupling limits. A straightforward extrapolation of the RDA data for L≤14L\leq 14 lattice results in a continuous Mott-Hubbard transition at Uc≈WU_{\rm c}\approx W. We discuss the significance of a possible signature of a coexistence region between insulating and metallic ground states in the RDA that would correspond to the scenario of a discontinuous Mott-Hubbard transition as found in numerical investigations of the Dynamical Mean-Field Theory for the Hubbard model.Comment: 10 pages, 11 figure

    Magnetism of one-dimensional Wigner lattices and its impact on charge order

    Full text link
    The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest- and next-nearest-neighbor hopping t_1 and t_2 is explored. We find a region at negative t_2 with fully saturated ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromagnetism at t_2 <0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much smaller than the Mott-Hubbard gap proportional to U. Remarkably, we find a strong dependence of the charge structure factor on magnetism even in the limit U to infinity, in contrast to the expectation that charge ordering in the Wigner lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix renormalization group and exact diagonalization, can be transparently explained by means of an effective low-energy Hamiltonian

    Uniform and staggered magnetizations induced by Dzyaloshinskii-Moriya interactions in isolated and coupled spin 1/2 dimers in a magnetic field

    Full text link
    We investigate the interplay of Dzyaloshinskii-Moriya interactions and an external field in spin 1/2 dimers. For isolated dimers and at low field, we derive simple expressions for the staggered and uniform magnetizations which show that the orientation of the uniform magnetization can deviate significantly from that of the external field. In fact, in the limit where the D{\bf D} vector of the Dzyaloshinskii-Moriya interaction is parallel to the external field, the uniform magnetization actually becomes {\it perpendicular} to the field. For larger fields, we show that the staggered magnetization of an isolated dimer has a maximum close to one-half the polarization, with a large maximal value of 0.35gμB0.35 g\mu_B in the limit of very small Dzyaloshinskii-Moriya interaction. We investigate the effect of inter-dimer coupling in the context of ladders with Density Matrix Renormalization Group (DMRG) calculations and show that, as long as the values of the Dzyaloshinskii-Moriya and of the exchange interaction are compatible with respect to the development of a staggered magnetization, the simple picture that emerges for isolated dimers is also valid for weakly coupled dimers with minor modifications. The results are compared with torque measurements on Cu2_{2}(C5_{5}H12_{12}N2_{2})2_{2}Cl4_{4}.Comment: 8 pages, 9 figure
    • …
    corecore